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Abstract
Site-specific management strategies are usually dependant on the understanding of the 
underlying cause and effect relationships that occur at the within-field level. The assess-
ment of canopy geometry of tree crops has been facilitated in recent years through the 
development of light detection and ranging sensors mounted on terrestrial platforms. The 
main objective of this study was to uncover the factors driving orange tree variability in 
commercial orange groves. Secondly, this study sought to investigate whether tree geom-
etry information derived from a terrestrial sensing platform is useful information to guide 
management zones delineation in such groves. A database of soil physical attributes, ele-
vation, historical yield and canopy geometry (canopy volume and height) was analysed 
in three commercial orange groves in São Paulo, Brazil. Canopy geometry and historical 
yield were correlated with soil attributes in two of the three groves evaluated; in these 
groves, the correlation coefficient between yield and soil/landscape information was often 
above 0.6, depending on the year. Zones of different tree sizes presented different historical 
yield and soil properties in all three groves. In conclusion, assessing canopy volume pro-
vides useful information to delineate management zones and guide enhanced site-specific 
management strategies.
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Introduction

In precision agriculture (PA), diagnostics, recommendations and management actions are 
carried out locally, at the within-field level (i.e. site-specifically). Many site-specific appli-
cations can be quite straightforward and easy to understand, for example, the ‘spot spray-
ing’ of herbicides (e.g. Esau et al. 2016), where the product is applied only on the weeds 
spots rather than to the entire field; or the variable rate application of plant protection 
products based on crop biomass or crop volume (Berk et al. 2016), where higher spraying 
volumes are needed to cover a crop with higher biomass or volume. Conversely, the site-
specific recommendations of other important inputs such as fertilizers, can be much more 
complex because it often involves the local estimation of the crop yield potential and crop 
response to the applied fertilizer. An accurate recommendation is dependant on a thorough 
understanding of cause and effect relationships that occur in the cropping system. Such 
an understanding involves the assessment of the many variables governing yield potential, 
including the identification of which one is the most yield limiting.

Identifying management zones in a field is a way forward to promote such an under-
standing. Management zones are regions within a field with particular soil and terrain char-
acteristics governing yield potential. Typically, a database combining maps of soil physical 
properties, elevation, historical yield and other layers of information (e.g. satellite imagery) 
is used to identify the different zones within a field. The knowledge of the underlying char-
acteristics of each zone should then help farmers to make enhanced site-specific decisions.

The management zone approach has been extensively reported in grain crops and its 
usefulness to site-specific management has been greatly confirmed by research (Nawar 
et al. 2017). However, studies on methods to generate and make use of management zones 
in the citrus crop, or in other important tree crops, are notably scarce. In Florida, USA, 
early studies on PA for citrus were mostly based on developing yield mapping techniques 
(Schueller et al. 1999; Tumbo et al. 2002b; Whitney et al. 2001, 1999) and electronic sen-
sors to measure canopy volume and guide variable rate application of inputs (Schumann 
et al. 2006b; Tumbo et al. 2002a; Zaman et al. 2005). Two studies that applied the concept 
of management zones were carried out by Zaman and Schumann (2006) and by Mann et al. 
(2011). They analysed multiple layers of soil and plant information in two variable citrus 
blocks uncovering the main causes for crop performance variability.

In São Paulo, Brazil, a series of studies has been conducted to map and characterize 
the spatial variability of citrus groves (Leão et al. 2010; Molin et al. 2012; Molin and 
Mascarin 2007; Siqueira et al. 2010) and to develop and test site-specific nutrient man-
agement (Colaço et al. 2014; Colaço and Molin 2017, 2014). Colaço and Molin (2017) 
reported a variable rate application method based on yield and soil fertility mapping 
but, without the actual implementation of management zones—historical yield variabil-
ity patterns, terrain characteristics and soil electrical conductivity information were not 
part of the variable rate fertilizer decision. The authors evaluated the long term effects 
of such a strategy and found potential value in it given that less fertilizer was applied 
without much impact on fruit yield. However, their approach relied heavily on tradi-
tional, outdated, regional fertilizer equations that were often not adequate to the local 
soil condition found in the experimental groves—apparently because important land-
scape and physical soil properties were not part of the recommendation. Their study 
was also unable to clearly demonstrate whether the positive impacts on fertilizer use 
efficiency resulted from the site-specific strategy itself or simply because fertilizer rates 
were significantly lower than those used by the farmer. The authors concluded that, 
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regardless of the positive results obtained from their strategy, recommendations based 
on local response and yield potential would probably outperform regional fertilizer 
equations. Such an approach would certainly be aligned with a proper delineation of 
management zones and a thorough understanding of the soil constraints and yield poten-
tial in each zone.

Soil and terrain attributes are typically the main type of information used to help explain 
stable variability patterns of crop performance and yield potential. In the context of grain 
crops, crop performance is typically assessed via yield maps and/or remote (or proximal) 
sensing. However, in the scope of horticultural tree crops, yield maps are less common, 
given that automatic data acquisition by yield monitors is usually not available and harvest-
ing itself is not mechanical. The use of satellite imagery to provide information about crop 
development is also difficult given that it often does not provide sufficient spatial resolu-
tion to make accurate assessments on the canopies. In the past two decades, new sensing 
technologies based on terrestrial platforms have been developed, enabling the quick and 
accurate assessment of crop growth and development based on geometrical features of the 
tree canopy. Ranging sensors, especially light detection and ranging (LiDAR) sensors, have 
been regarded as some of the most promising solutions for that purpose.

In a recent review of ultrasonic and LiDAR sensors applied to horticultural tree crops, 
Colaço et al. (2018a) identified that the majority of studies in the past two decades have 
been focused on the development of data acquisition and processing systems to generate 
3D models of the trees and derive geometric information such as canopy volume or leaf 
density. Studies on the application of such sensors to precision horticulture have usually 
been limited to the variable application of spraying rates based on the tree canopy variabil-
ity (an example of simple, straightforward site-specific management strategy as described 
above). The authors pointed out the need for studies with a more holistic agronomic per-
spective where the information from sensors are combined with other layers of information 
for a proper understanding of cause and effect relationships to enable enhanced crop man-
agement decisions.

Colaço et  al. (2017) reported the development of a mobile terrestrial laser scanner 
(MTLS) based on a LiDAR sensor able to estimate citrus tree geometry at high spatial 
resolution and accuracy. Such an effort followed previous developments from Florida, USA 
(Lee and Ehsani 2009) and Catalonia, Spain (Rosell-Polo et al. 2009a, b) with the addi-
tion that their data acquisition and processing systems were able to scan and map groves at 
large commercial scales. The first study (Part 1, Colaço et al. 2018b) of this two publica-
tion series reported the variability of canopy volume and height in five commercial orange 
groves in São Paulo, Brazil, measured with the developed MTLS system. Results indicated 
that the variability found in canopy volume should encourage variable rate application of 
inputs based on the sensor readings; sensor-based variable rate application might attain 
input savings of around 40%. However, when developing strategies to recommend input 
applications involving the understanding of crop response, the question of how to make use 
of canopy variability information remains; e.g. larger trees should receive more or less fer-
tilizer? The straightforward answer to that and other questions is that it depends on which 
factors are constraining crop performance in each zone; in conclusion, more layers of infor-
mation should be analysed.

In order to better interpret tree canopy variability and to fully explore the usefulness of 
sensor-based canopy geometry measurements to site-specific management, a comprehen-
sive investigation of the factors driving tree canopy variability is needed. Thus, the objec-
tives of the present study were twofold: (a) to investigate the possible causes of tree canopy 
variability in orange groves and (b) to investigate whether canopy geometry derived from 
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a mobile terrestrial laser scanning system is useful information to delineate management 
zones in commercial orange groves.

Materials and methods

A spatial database of soil and historical yield information was available in only three of the 
five citrus groves analysed in Part 1, so this research was confined to these three groves. 
Groves were approximately 25 ha each, located in São Paulo, Brazil (Fig. 1). Trees were 
grown in a rain-fed system. Main soil types were Arenosol–loamy sand in groves 1 and 3 
and Ferralsol–clay loam in grove 2, which are deep soils with uniform texture across their 
profile. The groves were scanned by a MTLS system to generate maps of canopy volume 
and canopy height. The system was based on a LiDAR sensor (LMS 200, Sick, Waldkirch, 
Germany) and an RTK-GNSS receiver (Real Time Kinematics—Global Navigation Sat-
ellite System, GR3, Topcon, Tokyo, Japan), which was operated along the alleys of the 
groves to take vertical scans of the side of the tree rows. A 3D point cloud was generated 
and a surface reconstruction algorithm was used to retrieve canopy geometry information 
for each row section (equivalent to one tree) across the entire grove. At the time of scan-
ning (2015), groves were 6, 12 and 11 years old, respectively. A thorough description of 
the canopy variability is available in Part 1 (Colaço et al. 2018b). Details on the scanning 
system and processing steps (from the raw LiDAR data to the canopy geometry calcula-
tion) are available in Colaço et al. (2017).

In order to explore the possible causes of canopy variation and their relation with other 
agronomic parameters, a database of different map layers was assembled and analysed 
(Table  1). Soil and terrain layers were: elevation, soil apparent electrical conductivity 
(ECa), soil texture and soil organic matter information. These parameters were chosen due 
to their temporal stability; i.e. their spatial variability patterns are not expected to change 
significantly over the years. A series of yield maps was also analysed. All maps were pro-
duced by interpolating the data using ordinary kriging. Local variograms were used for 
maps from high density data (ECa sensors and yield mapping) in order to better capture 
local variations. A global variogram was used for sparse data (soil sampling for soil texture 
and soil organic matter). A 5 m pixel grid was used in all maps. The Vesper 1.6 software 

Fig. 1   Top view of the commercial orange groves used in this study
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(Minasny et al. 2005) and QGIS 2.10 (QGIS Development Team 2018) software were used 
for interpolation and final editing of the maps, respectively.

Mapping of elevation and soil attributes

Georeferenced soil samples were collected throughout the groves in order to map soil tex-
ture and organic matter. These data were available from other experiments carried out in 
these groves (Colaço and Molin 2017, 2014). 25 composite soil samples (0–0.2 m depth) 
were collected in grove 1 (approximately one sample per hectare) and 50 in groves 2 and 3 
(approximately two samples per hectare). Elevation data was derived from the RTK-GNSS 
track data derived from the LiDAR scanning.

Soil ECa was obtained through a Veris 3100 sensor (Veris Technology, Salina, USA). 
This instrument has six electrode discs which are inserted in the soil to collect on-the-go 
ECa data from two depth layers of approximately 0–0.3 m and 0–0.9 m. In this study, only 
the shallow ECa data was used for analysis. One might expect that because of the deep 
root system of citrus trees, information from the deep ECa would add important informa-
tion. However, the spatial variability patterns between the two layers were similar, which 
was expected for these soil types. In addition, correlations between the 0.9  m layer and 
other crop and soil attributes were generally slightly lower than the shallow layer (data 
not shown). It was then considered that ECa information from the deeper layer would not 
add much value to the analysis. The sensor was pulled by a tractor along the alleys of the 
groves at 2.8 m s−1. Data were recorded at 1 Hz frequency. Before generating the final map, 
discrepant values (exceeding two standard deviations from the average) were excluded. A 
local search for outliers was also carried out following the method of Spekken et al. (2013).

Yield mapping

Yield maps were also available from previous studies testing site-specific nutrient manage-
ment practices (Colaço and Molin 2017, 2014). Yield maps were collected between 2008 
and 2013 for groves 2 and 3, and from 2012 to 2015 for grove 1. The harvest of the fruits 
was manual so the yield mapping had to follow a specific technique developed for hand 
harvest. During the harvest, the pickers use ‘big bags’ to store the fruits while they carry 
out their harvesting work. To collect yield data, the location of these bags was georefer-
enced using a common navigation GNSS receiver (coarse acquisition code with accuracy 

Table 1   Different information layers used, source of information and year of measurement for each grove

Layer Source Year of measurement

Elevation GNSS track data from LiDAR scanning 2015
Soil organic matter Georeferenced grid soil sampling 2012 (grove 1) and 2009 (groves 2 and 3)
Soil clay content Georeferenced grid soil sampling 2012 (grove 1) and 2009 (groves 2 and 3)
Soil ECa Veris sensor 2014 (grove 1) and 2009 (groves 2 and 3)
Yield Georefencing of big bags during harvest 2012–2015 (grove 1) and 2009–2013 

(groves 2 and 3)
Canopy geom-

etry (volume and 
height)

LiDAR sensor 2015
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of approximately 3 m). Yield values were calculated for each point based on the mass of 
the bag and the area it represented in the field. The mass of each bag was visually esti-
mated by the harvest crew leader. In previous studies, this visual estimation showed errors 
below 4% (Molin et al. 2012; Molin and Mascarin 2007). The corresponding area of each 
point was computed using the ‘Voronoi diagram’ tool available in the QGIS software. This 
algorithm divides the field into smaller polygons, each corresponding to the coverage area 
of one point (Fig. 2). The boundaries of those polygons are given by halving the distances 
between the point and its neighbours. The final yield value was calculated by dividing the 
mass of the bag by its area. This value was assigned to a centroid point inside each poly-
gon. Finally, the data were interpolated to produce the final yield map. The logic behind 
this yield mapping technique is that yield should be higher with higher concentration of 
points. Colaço et al. (2015) tested the Voronoi-based method against a modelled reference 
yield map and found that the yield mapping technique was able to represent spatial vari-
ability patterns. The correlation between reference and predicted yield maps was 0.75 (R2), 
and the average yield error was 15%.

Data analysis

The initial analysis was based on descriptive statistics and geostatistics followed by a visual 
assessment over the maps of yield, soil attributes, elevation and canopy geometry in order 
to identify patterns in the spatial variability. Spatial dependence was calculated as the nug-
get variance (non-spatial variance) divided by sill variance (spatially dependent variance). 
Higher values of spatial dependence mean that variability was less spatially dependant, i.e. 
more random in space. According to Cambardella et al. (1994), spatial dependence can be 
interpreted as strong (< 0.25), moderate (between 0.25 and 0.75) or weak (> 0.75). A pixel-
based correlation analysis was performed for each pair of maps to assess the relationships 
between the different variables.

To address the second objective of this study, to evaluate whether the canopy geom-
etry is useful in guiding management zone delineation in an orange grove, the following 
procedure was conducted: the canopy volume maps from 2015 were classified into three 
classes, large, medium and small, by the fuzzy k-means clustering algorithm available in 
the software MZA (management zone analyst, Fridgen et al. 2004). Using R software (R 

Big bag 

Centroid 

Yield (Mg ha-1) 
28        47        65 

(a) (b) 

100 m 10 m 

Fig. 2   Georeferenced big bags and their corresponding area through the Voronoi diagram and centroid of 
each polygon (a) and yield calculated at each centroid (b)
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Core Team 2018), the average values of the different variables (soil attributes, elevation 
and yield) were computed for each zone and the Tukey test was performed (p > 0.001) to 
assess the differences between the three zones. Similar analysis was conducted by Mann 
et al. (2011). Even though canopy geometry is available for 1 year only, comparing it with 
fruit yield from other years provide insight into the temporal stability of canopy geom-
etry and whether historical yield (i.e. yield potential) can be informed by canopy geometry 
of any particular year. It is reasonable to expect that variability patterns of tree geometry 
should not change significantly over the years, as demonstrated by Escolà et al. (2017) in 
an olive grove.

Results

Relationship between crop and soil attributes

Grove 1

The first noticeable fact about the maps of grove 1 is the little resemblance between 
them, especially for the yield maps of the different seasons (Fig. 3). This is evidenced 

Fig. 3   Maps of elevation, soil attributes, historical yield and canopy geometry in grove 1
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by a generally low coefficient of correlation between maps (Table 3). The coefficients 
of variation of yield maps were also generally low, ranging from 7 to 13% (Table  2), 
with weak spatial dependence. The range (difference between minimum and maximum 
values) of soil organic matter, clay content and soil ECa were also very low (Table 2), 
despite the 12  m variation in elevation. Even though the resemblance between these 
maps was not very clear, the correlation between soil/terrain attributes reached 0.61 in 
the case of soil organic matter vs ECa, which indicates some consistency in their spatial 
variability (Table 3).

It is clear that soil properties were not the main factors driving crop performance var-
iability in this grove. Higher yield usually occurred in the lower parts of the grove (see 
negative correlations between yield and elevation in Table 3). However, the yield spatial 
patterns were not consistent over the years. The variability found in the maps of canopy 
volume and height (Fig. 3) also did not clearly match with any of the other variables. In 
fact, the coefficient of correlation was usually low, reaching between 0.2 and 0.3 in the 
best cases. There are numerous factors, besides soil variables, that might have affected 
the variability of yield and canopy development in this grove.

Table 2   Descriptive statistics and spatial dependence of maps of soil and plant variables in grove 1

*Coefficient of variation (dimensionless)
**Spatial dependence: Nugget variance divided by sill variance (dimensionless)

Variable Unit Mean Minimum Maximum CV* SD**

Canopy volume (2015) m3 12.14 8.05 17.31 0.09 0.80
Canopy height (2015) m 2.87 2.45 3.43 0.04 0.83
Yield (2012) Mg ha−1 13.91 10.03 19.31 0.13 0.58
Yield (2013) Mg ha−1 34.44 26.80 41.63 0.07 0.85
Yield (2014) Mg ha−1 37.65 31.82 46.26 0.08 0.78
Yield (2015) Mg ha−1 41.13 35.04 50.67 0.07 0.83
ECa (0–0.3 m) mS m−1 2.45 1.63 3.25 0.12 0.54
Clay content % 16.84 15.15 19.56 0.06 0.11
Organic matter % 1.37 1.12 1.50 0.63 0.09
Elevation m 637.68 630.45 642.89 0.00 –

Table 3   Correlation matrix between different maps in grove 1
Canopy 
Volume
(2015)

Canopy 
Height
(2015)

Yield 
(2012)

Yield 
(2013)

Yield 
(2014)

Yield 
(2015) ECa Clay OM Elev.

Canopy Volume (2015) 1.00 0.61 0.04 0.30 0.28 0.24 0.25 0.30 0.17 0.00
Canopy Height (2015) 0.61 1.00 – 0.20 0.27 – 0.19 0.08 0.03 0.11 0.18 0.47

Yield (2012) 0.04 – 0.20 1.00 0.07 0.58 0.30 0.23 0.19 0.02 –0.48
Yield (2013) 0.30 0.27 0.07 1.00 0.11 0.33 – 0.01 0.06 – 0.20 –0.13
Yield (2014) 0.28 – 0.19 0.58 0.11 1.00 0.46 0.23 0.36 0.00 –0.70
Yield (2015) 0.24 0.08 0.30 0.33 0.46 1.00 0.08 0.22 – 0.20 –0.46

ECa 0.25 0.03 0.23 – 0.01 0.23 0.08 1.00 0.48 0.61 0.08
Clay 0.30 0.11 0.19 0.06 0.36 0.22 0.48 1.00 0.60 0.03
OM 0.17 0.18 0.02 – 0.20 0.00 – 0.20 0.61 0.60 1.00 0.54
Elev. 0.00 0.47 – 0.48 – 0.13 – 0.70 – 0.46 0.08 0.03 0.54 1.00

*ECa soil electrical conductivity in 0.3 m depth, OM organic matter, Elev. elevation
**Grey scale: darker colours mean stronger correlations
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Grove 2

In contrast to the results for grove 1, some similarities among maps were visible in groves 2 
and 3. Yield and canopy geometry were more spatially dependent in grove 2 than in grove 
1 (spatial dependence was usually moderate). The clay content in grove 2 was markedly 
variable (from 18 to 50%, Table 4). The spatial distributions of clay content and organic 
matter in this field are similar to the variation of elevation; clay content and organic matter 
are higher in the lower areas of the grove (Fig. 4). The soil ECa was also highly variable 
(values from 1.65 to 14.1 mS m−1). Generally, soil ECa also followed the variation pattern 
of elevation (higher values in the lowest part of the field). The correlation between soil 
variables and elevation ranged from − 0.31 up to − 0.75 (Table 5).

The variability of the yield maps from 2008 until 2010 was similar to soil variability 
patterns (highest correlation was 0.79, between yield map of 2009 and clay content). This 
behaviour was not so clear in the subsequent yield maps. Canopy geometry variability was 
reasonably similar to soil ECa, clay content and to the yield maps of 2008, 2009 and 2012. 
Yet, correlations were not particularly high (highest correlation was 0.41, between canopy 
volume and 2012 yield map).

Grove 3

A consistent variability pattern was found in grove 3 for most soil and yield maps (Fig. 5), 
despite the small range in soil attributes (clay content varied from 11.5 to 16.1% and 
organic matter from 1.4 to 2%, Table 6). As in grove 2, spatial dependence values for yield 
and canopy geometry were usually classified as moderate. It was noticed that in the south-
ern-most corner of the grove, where elevation is also lower, there is a lower amount of 
organic matter and clay. Also, this is the region where lower yield occurred in practically 
all the years evaluated, especially in the yield maps of 2011, 2012 and 2013 (the corre-
lation between yield in these years, clay content and elevation varied between 0.50 and 
0.60, Table 7). This same region presented the highest values of ECa. This small southern 

Table 4   Descriptive statistics and spatial dependence of maps of soil and plant variables in grove 2

*Coefficient of variation (dimensionless)
**Spatial dependence: nugget variance divided by sill variance (dimensionless)

Variable Unit Mean Minimum Maximum CV* SD**

Canopy volume (2015) m3 40.64 16.22 57.44 0.11 0.73
Canopy height (2015) m 4.44 3.28 5.01 0.04 0.75
Yield (2008) Mg ha−1 18.36 10.62 32.95 0.17 0.41
Yield (2009) Mg ha−1 33.06 20.67 46.02 0.16 0.65
Yield (2010) Mg ha−1 20.07 8.59 38.68 0.18 0.52
Yield (2011) Mg ha−1 45.43 33.43 61.63 0.07 0.62
Yield (2012) Mg ha−1 66.09 30.37 102.96 0.13 0.72
Yield (2013) Mg ha−1 47.09 30.42 73.79 0.12 0.66
ECa (0–0.3 m) mS m−1 4.52 1.65 14.10 0.31 0.23
Clay content % 32.60 18.35 50.38 0.26 0.17
Organic mater % 2.39 2.10 2.93 0.09 0.13
Elevation m 748.47 744.66 755.86 0.00 –



www.manaraa.com

814	 Precision Agriculture (2019) 20:805–822

1 3

Fig. 4   Maps of elevation, soil attributes, historical yield and canopy geometry in grove 2

Table 5   Correlation matrix between different maps in grove 2

  
Canopy 
Volume 
(2015) 

Canopy 
Height 
(2015) 

Yield 
(2008) 

Yield 
(2009) 

Yield 
(2010) 

Yield 
(2011) 

Yield 
(2012) 

Yield 
(2013) ECa Clay  OM  Elev. 

Canopy Volume (2015) 1.00 0.82 0.36 0.40 0.18 0.17 0.41 0.10 0.30 0.29 0.20 – 0.37 
Canopy Height (2015) 0.82 1.00 0.29 0.35 0.17 0.17 0.37 0.21 0.30 0.29 0.26 – 0.37 

Yield (2008) 0.36 0.29 1.00 0.70 0.42 – 0.10 0.10 – 0.30 0.34 0.56 0.52 – 0.53 
Yield (2009) 0.40 0.35 0.70 1.00 0.49 – 0.14 0.15 – 0.38 0.33 0.79 0.64 – 0.76 
Yield (2010) 0.18 0.17 0.42 0.49 1.00 – 0.01 0.04 – 0.26 0.08 0.52 0.51 – 0.41 
Yield (2011) 0.17 0.17 – 0.10 – 0.14 – 0.01 1.00 0.40 0.14 – 0.15 – 0.24 – 0.23 0.21 
Yield (2012) 0.41 0.37 0.10 0.15 0.04 0.40 1.00 0.17 0.06 0.15 0.07 – 0.18 
Yield (2013) 0.10 0.21 – 0.30 – 0.38 – 0.26 0.14 0.17 1.00 – 0.09 – 0.37 – 0.20 0.18 

ECa 0.30 0.30 0.34 0.33 0.08 – 0.15 0.06 – 0.09 1.00 0.43 0.31 – 0.31 
Clay  0.29 0.29 0.56 0.79 0.52 – 0.24 0.15 – 0.37 0.43 1.00 0.83 – 0.75 
OM  0.20 0.26 0.52 0.64 0.51 – 0.23 0.07 – 0.20 0.31 0.83 1.00 – 0.58 
Elev. – 0.37 – 0.37 – 0.53 – 0.76 – 0.41 0.21 – 0.18 0.18 – 0.31 – 0.75 – 0.58 1.00 

ECa soil electrical conductivity in 0.3 m depth, OM organic matter, Elev. elevation
Grey scale: darker colours mean stronger correlations
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Fig. 5   Maps of elevation, soil attributes, historical yield and canopy geometry in grove 3

Table 6   Descriptive statistics and spatial dependence of maps of soil and plant variables in grove 3

*Coefficient of variation (dimensionless)
**Spatial dependence: Nugget variance divided by sill variance (dimensionless)

Variable Unit Mean Minimum Maximum CV* SD**

Canopy volume (2015) m3 35.87 12.50 57.63 0.15 0.69
Canopy height (2015) m 4.50 2.96 5.34 0.06 0.75
Yield (2008) Mg ha−1 12.28 7.87 19.80 0.13 0.48
Yield (2009) Mg ha−1 21.30 13.42 31.09 0.11 0.50
Yield (2010) Mg ha−1 22.96 14.43 38.77 0.14 0.44
Yield (2011) Mg ha−1 47.24 13.58 62.24 0.18 0.72
Yield (2012) Mg ha−1 57.50 22.32 83.54 0.18 0.71
Yield (2013) Mg ha−1 38.89 15.27 58.96 0.16 0.69
ECa (0–0.3 m) mS m−1 1.03 0.25 6.15 0.53 0.28
Clay content % 14.53 11.51 16.12 0.06 0.17
Organic Mater % 1.71 1.49 2.02 0.06 0.59
Elevation m 765.67 760.34 768.37 0.00 –
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portion of the field is known for having drainage problems, which explains higher levels of 
ECa and lower yields.

This grove presented the highest correlations between canopy geometry and soil param-
eters and yield. As for the other groves, the canopy height generally yielded lower correla-
tions with yield and soil variables than canopy volume. The maps of canopy volume and 
height showed that in the region with bad drainage, tree development was harmed. A nega-
tive correlation between canopy volume and soil ECa (r = − 0.51) was found. The map of 
canopy volume was also similar to most of the yield maps (excluding the yield maps from 
2009 to 2010).

Does canopy geometry information help in delineating management zones?

Figure  6 shows the cluster classification of the groves into three classes of canopy vol-
ume (canopy volume was chosen over canopy height due to its higher correlations with 
other variables); it should be noted that these maps do not represent the final manage-
ment zones for these groves, but only the canopy volume data classified into three clusters. 

Table 7   Correlation matrix between different maps in grove 3
Canopy 
Volume
(2015)

Canopy 
Height
(2015)

Yield 
(2008)

Yield 
(2009)

Yield 
(2010)

Yield 
(2011)

Yield 
(2012)

Yield 
(2013) ECa Clay OM Elev.

Canopy Volume (2015) 1.00 0.91 0.53 –0.16 –0.09 0.72 0.54 0.62 –0.51 0.27 0.41 0.44
Canopy Height (2015) 0.91 1.00 0.49 –0.14 –0.09 0.67 0.52 0.59 –0.51 0.25 0.35 0.36

Yield (2008) 0.53 0.49 1.00 –0.19 –0.19 0.56 0.42 0.54 –0.23 0.30 0.44 0.41
Yield (2009) –0.16 –0.14 –0.19 1.00 0.11 –0.04 –0.08 –0.25 0.15 –0.02 – 0.32 –0.46
Yield (2010) –0.09 –0.09 –0.19 0.11 1.00 0.09 –0.02 –0.02 –0.33 0.10 – 0.23 –0.12
Yield (2011) 0.72 0.67 0.56 –0.04 0.09 1.00 0.72 0.71 –0.58 0.56 0.34 0.58
Yield (2012) 0.54 0.52 0.42 –0.08 –0.02 0.72 1.00 0.60 –0.35 0.62 0.31 0.53
Yield (2013) 0.62 0.59 0.54 –0.25 –0.02 0.71 0.60 1.00 –0.42 0.53 0.34 0.53

ECa –0.51 –0.51 –0.23 0.15 –0.33 –0.58 –0.35 –0.42 1.00 –0.29 – 0.22 –0.34
Clay 0.27 0.25 0.30 –0.02 0.10 0.56 0.62 0.53 –0.29 1.00 0.20 0.43
OM 0.41 0.35 0.44 –0.32 –0.23 0.34 0.31 0.34 –0.22 0.20 1.00 0.64
Elev. 0.44 0.36 0.41 –0.46 –0.12 0.58 0.53 0.53 –0.34 0.43 0.64 1.00

ECa soil electrical conductivity in 0.3 m depth, OM organic matter, Elev. elevation
Grey scale: darker colours mean stronger correlations

Fig. 6   Classes of different tree sizes derived from canopy volume maps of 2015 in three commercial orange 
groves
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The classification in grove 3 produced continuous zones matching with spatial patterns 
observed in soil and yield maps. The zones were more diffuse in groves 1 and 2. The clas-
sification of canopy volume in grove 2 resembled the elevation, soil attributes and some 
yield maps. Regarding grove 1, the classification of the canopy volume did not clearly 
match any of the yield or soil maps.

The mean values of each variable in the database (historical yield and soil attributes) 
were computed for each canopy volume zone (Table  8). As expected, zones with larger 
trees were found in sites with higher clay and organic matter content. The soil ECa was 
also higher in those regions, with the exception of grove 3, where the higher ECa was found 
in the zone with smaller trees (in that grove, high ECa was related to bad soil drainage). 
Historical yield was usually significantly different between the canopy volume zones. As 
expected, zones of larger trees had superior historical yield performance and vice versa. It 
can be suggested that canopy volume for a particular yield can give information about yield 
performance in past years, even though in a few cases some unexpected results were found 
where the highest yield occurred in the zones with medium (grove 2 in 2013 and grove 3 
in 2010) or small trees (grove 3 in 2009). Generally, soil and crop variables differed sig-
nificantly (p > 0.001) between tree size classes in the three groves. Therefore, the canopy 
volume map can be used to guide management zone delineation.

Discussion

A general evaluation of the spatial variability in the three groves indicates that the young-
est grove, grove 1, presented less variability in yield, soil attributes and canopy volume. 
Spatial dependence was usually weaker than in the other groves. The variability found was 
not very consistent and there was little resemblance between maps. As discussed in Part 1 
(Colaço et al. 2018b) the canopy volume showed a frequency distribution close to normal 
and a weak spatial dependence indicating a certain level of randomness of the spatial vari-
ability of canopy volume. Grove 3 showed higher variability in soil conditions, significant 
yield variability with reasonably consistent patterns between the years (lower yields in area 
with bad soil drainage). The canopy geometry variation usually matched the variability 
found in soil and yield. Grove 2 showed intermediate results. Significant variation was 
found in elevation and soil attributes, which affected canopy geometry and yield variabil-
ity. Overall, it can be suggested that the effects of soil constraints on the crop development 
can accumulate over time leading to greater and more spatially structured spatial variabil-
ity of canopy geometry in more mature groves then in younger ones.

Some studies in Florida showed strong correlations between orange fruit yield and ultra-
sonically measured canopy volume. Mann et al. (2011) found a correlation of 0.85 between 
the two parameters in a 10 ha orange grove. Zaman et al. (2006) divided an orange grove 
into forty 0.4 ha plots and calculated the total tree volume and fruit yield per ha for each 
plot. Using half of the plots (the other half were used as a validation data set), they got an 
R2 of 0.80 between canopy volume and fruit yield. In the same grove but using all forty 
plots, Schumann et al. (2006a) reported an R2 of 0.64. In their study, the canopy height was 
slightly less correlated (R2 = 0.54) with yield than canopy volume; similar behaviour was 
found in this study. Those groves in Florida presented significantly higher canopy volume 
variability than the groves evaluated in this study. For instance, the coefficient of variation 
of canopy volume in the study of Mann et al. (2011) was 54%. Since the work of Whit-
ney et al. (1999), studies on PA in Florida have demonstrated that tree canopy and yield 
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variability can be significantly affected by differences in soil properties (e.g. soil texture 
and water table depth) and disease occurrence. Groves in Florida are usually kept for sev-
eral decades before they are renewed, which helps increase canopy variability. In Brazil, 
groves are renewed every 15–20 years.

The analysis of spatial and temporal variability demonstrated that the opportunity for 
site-specific management varies between different groves (see differences between groves 
in this study), agro-ecological regions and management systems (see differences between 
Florida, USA and São Paulo, Brazil). When patterns of spatial variability of soil and plant 
properties are consistent, site-specific strategies are much easier to develop and their use-
fulness is easily perceived by the grower; for example, instead of trying to increase yield 
with higher fertilizer rates in low canopy volume areas in grove 3, inputs should be kept 
to minimum levels given that the main constraint in that region is poor soil drainage. Con-
versely, because spatial variability was not as significant nor consistent in grove 1, strat-
egies such as the above are not obvious and further investigation is needed before any 
enhanced fertilizer strategy can be applied with confidence. Meanwhile, straightforward 
strategies such as sensor-based variable rate spraying should be encouraged.

Generally, soil and crop variables differed significantly between tree size classes in 
the three groves. The long-term average yield in each zone behaved as expected, where 
higher average yields occurred in zones with larger trees and vice versa. Mann et al. (2011) 
obtained similar results by classifying an orange grove into five zones based on canopy 
volume. These results indicate that the canopy volume map from one particular year can 
provide zones where soil and historical yield are different. Long-term relative average 
yields between zones can be used as proxy to zone yield potential, then greatly enhanc-
ing site-specific (or zone-specific) fertilizer recommendations. Management zones are usu-
ally delineated based on the combination of several layers of information. In this case, all 
available variables could be considered as management zone indicators. However, in the 
absence of a large database, the canopy volume alone can help to reveal zones of different 
soil and yield performance.

The use of management zones derived from canopy volume information or from a com-
prehensive database of soil and yield maps does not mean that application rates must be 
kept constant inside each zone. Laser scanning systems are able to provide information 
about variability even within each plant (Colaço et  al. 2017). The optimum use of such 
technology should be a system that combines the sensor-based variable rate application 
with a base-map layer of the established management zones. In such a system, the sensor 
readings should adjust the application rate proportionally to the canopy volume variation 
along the row. Simultaneously, the management zone base map should guide the fertiliza-
tion strategy (e.g. choosing the optimal fertilization algorithm) to achieve realistic yield 
goals for each specific zone. In conclusion, the base map of management zones could pro-
vide an idea of the ’macro’ amount of input whilst the sensor reading could adjust it within 
each zone (’micro’ adjustment).

Conclusions

Spatial variability of citrus canopy volume and fruit yield was related to soil physical prop-
erties in two of the three groves (groves 2 and 3) evaluated. Poor soil drainage was respon-
sible for limited canopy growth and yield in a portion of grove 3. In grove 2, variability 
of soil texture and soil electrical conductivity (proxies to soil water availability) had an 
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important effect on the variability of canopy growth and fruit yield. In the youngest grove, 
grove 1, canopy geometry and fruit yield were spatially variable but their variability pat-
terns were not consistent. Soil parameters were less variable and their relationship with 
crop performance was not clear. Results in this study suggests that more mature groves 
might present more consistent and structured spatial variability patterns of crop perfor-
mance, given that the effects of soil constraints on the crop can accumulate over time. In 
addition, opportunities for site-specific management are greater in groves with more vari-
able soil properties and when the causes for crop variability are easily identified.

Canopy volume information is an important layer for delineating management zones 
in orange groves. Historical yield and soil properties were significantly different between 
zones of different canopy volume, i.e. canopy geometry information helped to identify 
zones with different yield potential and soil characteristics. Having reliable management 
zone information can greatly enhance site-specific management in orange groves given that 
growers are able to tailor input requirements to local yield goals and soil constraints.
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